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Unlock the full potential of enterprise data. # Keboola
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About Me
* Research Lead:; Al
Applications

* Exploring and
Implementing Al
technologies in data
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A broken clock is wrong...  Keboola

Garbage Garbage
in Oout




.. But it's still right twice a day # Keboola

Garbage
in




Struggling with Outliers;

Unable to handle genuine novelty R Keboola

How many times does the letter "i" appear in "artificial"?

( J
Lo, & The letter "i" appears twice in the word "artificial."

e R S
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Struggling with
Outliers;

Unable to handle
genuine novelty

. You

A man and his mother are in a car
accident. The mother sadly dies. The
man is rushed to the ER. When the doctor
sees him, he says, “l can't operate on this
man. He's my son!”

How is this possible?

ChatGPT

The doctor is the man’s other parent—his
mother, indicating that the doctor is a
woman. This riddle plays on common
assumptions about professions and
gender roles.

Credit: @colin_fraser



Struggling with Outliers;

Unable to handle genuine novelty

Employee Salaries

Employee Salaries

Employee ID Salary
12 500 CZK/Month
16 1.000.000$/year
1243 $75,000/year
242344 3.000/month
555 250.00 Kc/Year
63465 100.000 USD/month

Employee ID Currency Salary Fregt(jgncy
12 UsD $5,000 Annual
116 UsD $1,000,000 Annual
1243 usbD $75,000 Annual
242344 usD $360,000 Annual
555 usbD $32,000 Annual
63465 ushD 1,200,00 Annual




The Plateau was always (kind of) here
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But where’s the value? % Keboola

Investment in Al has
reached a new high with
a focus on generative Al,
which, in most cases,
has yet to deliver its
anticipated business
value.

Gartner - Hype Cycle for
Artificial Intelligence, 2024

Function
Calling

Prompt RAG Reranking Agents
Engineering

Tools

A 4

Fine-tuning Memory

DPO Tuning Text2SQL
RLHF Semantic
Routing



But where’s the value?

All of the applied research going on can
The revenue isn't there be boiled down to one thing: “These
yet, and might never models are cool; now how can | get them
to do what | actually need?”




Analyzed v

The image contains a group of dogs. Upon
® dogs

visual inspection, there are nine dogs in total.

G-

Counting the dogs shows a total of 10.




Molmo and PixMo:
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tAllen Institute for Al YUniversity of Washington
prietary. The strongest open-weight models rely heavily
on synthetic data from proprietary VLMs to achieve good
performance, effectively distilling these closed models into pro-  Extensions to large language models (LLMs) that process

L . PO _ wily images in addition to text have resulted in impressive mul-
open ones. As a result, the community is still missing foun timodal capabilities, such as gencrating comprehensive im-

age descnpllons and accurately answering complex visual

ost performant of these vision-language
are state-of-the-art in their class of openness. Ourkey INNO- \gwever, remain proprietary with ne;; =X

vation is a novel, highly detailed image caption dataset col- ta, nor code being publicly release; Yo bug €Y o
-

022 s A T I O Op eI eSS Sk aIITTn With the goal of fostering scientific exploration, #¥mer-
“asls vation is anovel hivhly detailed image cantion dataset col- ous research efforts have attempted to reproduce similar

data. The success of our approach relies on careful choices | capabilities in open models. Early works, exemplified by

r the m ] hitectu 'lS ll-tun raining | LLaVA [15], produced fully open weights and training data
fO the model arc cture detai a we ed t 8 r but now lag significantly behind the state-of-the-art. More
' pipeline, and, most critically, the quality of our newly col- :  recent, stronger open-weight models have trended towards
o lected datasets, all of which will be released. The best-in- |

1. Introduction

* less open data: the training data may either be proprietary
e.g., [5]) or, in cases where it is released, there is a heavy
iance on synthetic data generated by proprietary systems,
e.g., models are trained on datasets like ShareGPT4V [7]
which uses GPT-4V [25] to generate a large set of detailed

O
O




nect an independently pre-trained, off-the-shelf vision en-

coder and language model and jointly train the resulting

VLM to generate captions from a newly collected dataset

of detailed, high-quality, dense image descriptions. After

joint training, we follow standard practice and use super-

vised fine-tuning to nroduce an instructign following model.
quality data (e.g., nt4, 55 e success of our approach re-
lies on careful choices for the model architecture details, a
well-tuned training pipeline, and most critically, the quality
of our new datasets, collectively named PixMo (Pixels for
Molmo), all of which will be released.

In practice, it is challenging to collect dense captioning
datasets from human annotators. If asked to write an im-
age description, the result often only mentions a few salient
visual elements [8]. If a minimum word count is enforced,

nnatatare will aithar talke tan lona tq tune malrinag, cnllan-

data from proprietary VI.Ms. Our key innovation is a sim-
ple but effective data collection strategy that avoids these
problems: we ask annotators to describe images in speech
for 60 to 90 seconds rather than asking them to write de-
scriptions. We prompt the annotators to describe everything

they see in great detail, including descriptions of spatial po-
sitioning and relationships. Empirically, we found that with
this modality switching “trick” annotators provide far more
detailed descriptions in less time, and for each description,
we collect an audio receipt (i.e., the annotator’s recording)
proving that a VLM was not used.

- 8 Keboola
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Figure 1. The Molmo architecture follows the simple and standard
design of combining a language model with a vision encoder. Its
strong performance is the result of a well-tuned training pipeline
and our new PixMo data.
oS
‘rank models by user preference. Oy QOM
el, MolmoE-1B, based on the OLMOE-1B- Q ~
nixture-of-experts LLM, nearly matches the perfo: 0
of GPT-4V on both academic benchmarks and o
preference. Molmo-7B-O and Molmo-7B-D, based on
OLMo-7B [10] and Qwen2 7B [33], respectively, perform
comfortably between GPT-4V and GPT-40 on both aca-
demic benchmarks and user preference. Our best-in-class
Molmo-72B model, based on Qwen2 72B, achieves the
highest academic benchmark score and ranks second by hu-
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NVLM: Open Frontier-Class Multimodal LLMs

Wenliang Dai* Nayeon Lee* Boxin Wang* Zhuoling Yang*
Zihan Liu Jon Barker Tuomas Rintamaki Mohammad Shoeybi Bryan Catanzaro
Wei Ping* '

NVIDIA

* {wdai, nayeonl, boxinw, zhuoliny, wping}@nvidia.com

Abstract

We introduce NVLM 1.0, ! a family of frontier-class multimodal large language
models (LLMs) that achieve state-of-the-art results on vision-language tasks, rival-

ing the leading proprietary models (e.g., GPT-40) and open-access models (e.g.,
Llama 3-V 405B and InternVL 2). Remarkably, NVLM 1.0 shows improved
text-only performance over its LLM backbone after multimodal training.

In terms of model design, we perform a comprehensive comparison between
decoder-only multimodal LLMs (e.g., LLaVA) and cross-attention-based models

(e.g., Flamingo). Based on the strengths and weaknesses of both approaches, O O

I [es.CL] 17 Sep 2024
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TS

_ and supervised fine-tuning datasets. Our findings indicate that dataset quality and '
30" ~ task diversity are more important than scale, even during the pretraining phase, >
across all architectures. Notab_lﬂyivggggvelop production-grade multimodality

mmmsmmna acmacial acalltanbiiin that acbhacann Lotk benlnlan AfL lncncs aved cnlelan

backbones. To achieve this, we and integrate a high-quality text-only dataset
into multimodal trainine. aloneside a substantial amount of multimodal math and

2409.
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3.1 Data

The AFM pre-training dataset consists of a diverse and high quality data
mixture. This includes data we have licensed from publishers, curated publicly-
available or open-sourced datasets, and publicly available information crawled
by our web-crawler, Applebot [Apple, 2024a]. We respect the right of webpages
to opt out of being crawled by Applebot, using standard robots.txt directivesy
Given our focus on protecting user privacy, we note that no private Apple‘ A
user data is included in the data mixture. Additionally, extensive efforts have ¢
been made to exclude profanity, unsafe material, and personally identifiable
information from publicly available data (see Section 7 for more details).
Rigorous decontamination is also performed against many common evaluation
benchmarks.

We find that data quality, much more so than quantity, is the key deter-
mining factor of downstream model performance. In the following, we provide
more details about key components of the data mixture.

‘We crawl publicly available information using our web crawler, Applebot [Apple,
2024a], and respect the rights of web publishers to opt out of Applebot using
standard robots.txt directives. Plus, we take steps to exclude pages containing
profanity and apply filters to remove certain categories of personally identifiable
information (PII). The remaining documents are then processed by a pipeline
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Will we run out of data? An analysis
Keboola of the limits of scaling datasets in
Machine Learning
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Will we run out of data? An analysis
»'i‘ Keboola of the limits of scaling datasets in

Machine Learning

—— Extrapolation based on computé

What are you |77 Sockot o (im0
doing to
lengthen this
curve in your
domain?
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Job Error X

SQL Error: Type mismatch: Cannot concatenate a string with an array

@ Explanation

This error is caused by trying to concatenate a string with an array. You should first convert the array to a
string and try again. You can use the ARRAY_TO_STRING function to resolve this issue.

Is this Al-generated explanation useful?
Job Error X

(& COPY DETAILS TO CLIPBOARD - SQL Error: Type mismatch: Cannot concatenate a string with an array

@ Explanation

This error occurs because the SQL query attempts to concatenate a string with an array, which is not
supported. The root cause is a deliberate change made recently in an upstream dependency, which
altered the data type of the column being concatenated.

Root Cause Analysis:

« Lineage Tracking: This error traces back to a recent update in the user_data_transformation step,
where the user_interests column was changed from a string to an array. This change affects the
current query in the report_generation_transformation step, where the user_interests column is
concatenated with other strings.

Is this Al-generated explanation useful? . e <

@ COPY DETAILS TO CLIPBOARD a CONTACT SUPPORT




revenuecategory Table Description CANCEL ® SAVE

This table contains data for tracking various revenue categories. Each category represents different segments related to
fitness, retail, training gear, climbing accessories, and retail packs.
« Primary key: The table is uniquely identified by the id column.

« Columns:

id: A unique identifier for each revenue category.
name: The name of the revenue category.
description; A detailed Aecrrintinn af the raveniie ratannrv [a a "Fitnace Ratail - Trainina (Rear Ratail - Climhina

Accessories, etc.").
isActive: A boolean
createdAt: The time
updatedAt: The tim
createdBy: Metada
updatedBy: Metadz
giftCardTypeld: Ad

£ Generate Description

Is this Al-generated desc

revenuecategory Table Description

The revenuecategory table is central to the forecasting and business insights process within the Keboola project. It contains
categorized revenue data across product lines such as Fitness, Retail, and Climbing Accessories. This classification
differentiates revenue streams by location and type, enabling detailed forecasting models.

In the context of the Global Historical Revenue Forecasting transformation, this table is used for the multivariate revenue
forecast, where each revenue entry is tied to a specific revenue category and location. By using the data from
revenuecategory, the project generates segmented revenue predictions, helping the business understand how different
categories perform across regions.

This segmentation enables the business to derive insights, such as identifying which categories drive revenue growth in
specific locations or identifying underperforming segments. These forecasts inform decisions on resource allocation, product

focus, and regional strategies, based on how revenue categories are expected to perform in the future.

Markdown is supported

(6] ® &
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Knowing the
trajectory of Al
doesn’t help to
predict the landscape
that it will shape
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Building
foundations for
Al Is a delicate
pbalance



We need to demand
more from our tools
and vendors

* Whatis the data for? Does it
represent what we want?

»’«

Keboola
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We nheed to demand # Keboola

more from our tools
and vendors

* Whatis the data for? Does it
represent what we want?

* What data is actually being
used? How is it being processed?




..
We nheed to demand # Keboola
more from our tools
and vendors

* Whatis the data for? Does it
represent what we want?

* What data is actually being
used? How is it being processed?

* How do we validate that the
data and models do the things
that we want it to do?




Lessons from the Trenches

Be Pragmatic




Lessons from the Trenches

Forge
Partnerships




Lessons from the Trenches

Curate your
Partnerships Knowledge
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