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DoorDash is a technology company that connects consumers with their favorite local businesses in
more than 30 countries across the globe. DoorDash is your door to more: the local commerce platform
dedicated to enabling merchants to thrive in the convenience economy, giving consumers access to

more of their communities, and providing work that empowers.
T

DoorDash’s vision has always been to deliver all the best of your neighborhood right to your doorstep,
from restaurants to convenience, grocery, retail, pet supplies, and more.



We want to capture all
shoppable moments

We are doing this by growing beyond Restaurants into new
verticals including Grocery, Convenience, Alcohol, Flowers,
Retail, as well as Gifting, and more!




New Verticals is a paradigm shift in
ML applications in the three sided

marketplace for DoorDash
Merchants can have 100K+ SKU’s in their inventory!
The Dasher shops and delivers.
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Besides being multi-intent and geo-aware, Search also needs to be
Personalized
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If done right, personalization within search can be delightful!

Unpersonalized Results
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But can go wrong, if relevance guardrails are not there!
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Q, broom that cleans cerners

Understanding Query Intent in Search

We want to organize the search results in a way that best matches
the customer’s search intent

We train relevance model based on engagement signals + human
annotations, but
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Automated Relevance Labels for Search

Relevance models depend on human annotations are costly and time
consuming. Human annotations can be largely augmented by LLMs.

€« Q Blueberry

@ Deals == SNAP

158 results

LLMs can help \ u:.,:
judge the R
relevance and
filter irrelevant
items out!

Brands v

Fruit

I

Search Ranking Model

LLM

LLM

Consensus Labelling

l

Metric




Product Knowledge Graph
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LLM Assisted Product Knowledge Graph Building

Training an accurate NLP model requires massive amount
of high-quality annotations.

Outsourcing annotation tasks to human annotators subjects
to long turnaround time and high cost.

LLM-assisted annotation solves “cold-start” problem,
reduces operation cost, and reduces time to build an NLP
model from weeks to days.
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LLM Assisted Product Knowledge Graph Building

® To uniquely identify and link Alcohol products we need to extract N attributes
® We start with a few golden annotation
® We use Retrieval Augmented Generation (RAG) to generate many more silver annotations
® We then fine-tune an LLM to build a Generalized Attribute Extraction model
ANN |-
Category Attribute Example
Wine Region Sonoma County
Prompt: {title) Espolon Reposado Tequila (1.5 I) {attribute) aging
Vintage 2012 Completion: Reposado
Prompt: {title} Espolon Tequila Anejo Cristalino (750 ml) (attribute)
Grape Variety Riesling Prompt: {title) Espolon Anejo Tequila Cristalino (1.5 I) {attribute) aging Comp’:g:;(’]: P
Prompt: (title) El Espolon Anejo Tequila (375 ml) {attribute} aging
Sweetness Level Semi-sweet Completion: Anejo
Spirits Flavor Pineapple ; Prompt: (title) Espolon Anejo Tequila Cristalino (1.5 I) aging !
Aging Silver [
ABV 80 Proof @
Container Plastic Bottle
Beer Flavor Sour Apple Prompt: (title} Espolon Anejo Tequila Cristalino (1.5 1) {attril aging
Completion: Anejo
Container Can
Calorie Content Light




LLM Assisted Product Knowledge Graph Building

INPUT: Semi-structured Data About Mx SKU + Image

{
*brandName" "EMPIRE KOSHER", Template
"isAlcohol": false, Library
"isWeighteditem": true,
"l Category": "KOSHER',
"rawMerchantitemName": "SMOKED TURKEY",
"shortDescription": "EMPIRE KOSHER",
"size": ".000",
"snapEligible™: true,

"unitOfMeasurement”: "POUND" : Matched @ @ @
) — Product =
(o

Template i,
(Defined CGorrr)
In-house by as Ruribute  Has Atifoue

Taxonomists) 3

LOTS of Human
Annotated
Examples for Fine
Tuning

OUTPUT: Sti d E> ion A g To DD

"brand": "Empire Kosher",

"noun": "Turkey Breast",

"flavor": "Smoked",
"Preparation_type": "Fully Cooked",

}



Finding Inaccuracies in the Catalog

® We construct a natural language prompt based on primary attributes
® We also classify the issue into different priority buckets based on stakeholder-provided definition

Prompt
Template

PREMIUM MEAT
OVEN ROASTED

TURKEY BREAST

& ¥iNee urkey | Lo

Land O' Frost Turkey Breast Honey Smoked (16 o0z)

Pass

Fail

Prompt
Template

explanation }—‘| Prompt @chatew

Output

answer: Fail

explanation: The photo shows a package of 'Land O' Frost
Premium Meat' with the label 'Oven Roasted Turkey Breast'
prominently displayed. The package also indicates that it
contains '1 LB' (16 ounces) of product, which matches the
product title 'Land O' Frost Turkey Breast Honey Smoked
(16 0z)'. However, the flavor specified in the title is 'Honey
Smoked' and the package in the photo says 'Oven
Roasted'.

PO: Major inconsistency that needs to be fixed
ASAP.

P1: Medium inconsistency that needs to be fixed
timely but not immediately.

P2: Minor inconsistency that can be added to the
backlog.




Technical Challenges

® Prompt tuning and evaluation at scale
o  Leveraging distributed computing APIs such as Ray to accelerate LLM inference

® Fine-tuning and domain adaptation
o  Fine Tuning (LoRA, QLORA etc. ) LLMs with internal data
o Adopting RAG methods
o Chain LLM and search engine using Agents

® Building high throughput and low latency pipelines
o Distilling and quantizing LLM models to student models for online inference



Next Stages of Exploration



Next Stages of Exploration

Enhancing existing LLMs
® Build DoorDash domain-specific LLM
® Adopt multi-modal LLMs
® Latency, quality, cost optimization

Better integration
® Inject external knowledge to in-house ML models via LLM
® Various type of RAG
® Smarter and more agent integration

More use cases
® Free Form Natural Language Search
® Cold Start Personalization

Promo Code:
GROCERYAI



Thank you!

Promo Code:
GROCERYAI
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